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NON S T A N D A R D  ANALYSIS AND THE 
C O M P A C T I F I C A T I O N  OF GROUPS 

BY 

YORAM HIRSCHFELD 

ABSTRACT 

The lattice of compactifications of a given group is related to the set lattice of a 
family of subgroups of the enlargement. We investigate the relations between 
these lattices and obtain a description of the universal compactification in terms 
of the neighbourhoods of the identity with finite index. 

In [5] A. Robinson used non standard analysis to obtain some compactifica- 

tions of groups and rings, as homomorphic  images of the enlargement.  Develop- 

ing his ideas we obtain a more systematical connection between compactifica- 

tions and a family of sub-groups of *G. These groups are characterized and a 

direct way to obtain the compactification as a quotient group using the 

corresponding group is described. With this correspondence the lattice structure 

of the family of compactifications corresponds to the set lattice structure of the 

family of subgroups (see 1.4 for a precise summary).  

This method gives rise to a new standard description of the universal 

compactification which starts with the sets of finite index. This is done in Section 

2. In p a r t i c u l a r - - t h e  universal compactification of a ring with a unit is the 

inverse limit of its finite quotient rings. 

We assume familiarity with the non standard characterizations of topological 

groups and filters as described in [3]. Also some familiarity with methods of non 

standard analysis is assumed since we shall not repeat  in details the usual 

arguments.  

Our  terminology follows [3] but it is adapted to the common use in non 

standard analysis. Thus/x (F) is the monad of F and not its nucleus (although it is 

still a nuclear set). In notations we accept the common use. Thus x E *A and not 

x E fi, or x* E A. As usual ~ is the standard point near x (assuming that such a 

point exists). 
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We begin with a fixed group G and a topology T on the group. T will denote  

the neighbourhood system of the identity which gives a complete description of 

the topology. If ~ is the monad of T we denote the topological group by (G, T) 

or by (G,/z) .  When additional groups will be considered the notations will be 

(G,p . (G)) ,  (H,p . (H)) ,  etc. If in such a case ( H , # ( H ) )  is said to be the 

compactification of (G, /~(G))  then a map f:  G--~ H is implicitly assumed. 

We enlarge a universe that includes G and all its compactifications (it is 

difficult to figure out which compactifications might be omit ted and why). We 

assume that the enlargenment is saturated enough to have the following 

properties: 

0.1 If F is a filter on G and f is a mapping then i . t ( f ( F ) ) = f ( ~ ( F ) )  

[3;5.1.10]; 

0.2 If F and F'  are filters on G then /z  (F ) . / z  (F')  is the monad of the filter 

H = { A B I  A E F  and B E F ' } .  

It is always the case that p~(F)./x (F ' )C/z  (H).  If now x E/.~ (H)  then the 

following is finitely satisfied on the pairs ( A , B )  in F •  F ' :  X C_A n Y C_ 

B A X ~ X Y .  Therefore  by saturation there is also an infinitesimal pair X E *F 

Y E *F '  and x E X Y  so that x ~ p. (F) .  ~ (F'). 

Finally it is worth mentioning that the whole discussion may be done in terms 

of filters on G rather then of compact  monads. It involves however some 

difficulties and does not seem more natural to us. 

I. The lattice of compactifications 

We begin by specifying a subset A of *G which plays a main role in our 

discussion. 

1.1 First we define an equivalence relation on * G : x - y  if for every 

standard set A, x E *A iff y E *A. This is indeed an equivalence relation and the 

equivalence classes are the monads of ultrafilters [3; 5.1.5]. 

Let A now be the set 

= { x y - ' l x  - 

(A will be fixed throughout the paper). It is easy to see that x - y iff x -1 - y-1 

and that x - y iff ax ~ ay for every standard element a. Therefore  we have the 

following: 

1.2. LEMMA. 

i) A = A-1 

ii) aAa-I  = A for every standard e lement  a. 
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1.3. DEFINITION. A compact monad for the topology/~ is a subgroup v of 

*G which satisfies the following conditions: 

i) A U/x Cv;  

ii) v is nuclear (i.e.: v is the monad of a filter); 

iii) v is a normal subgroup of *G. 

1.4. Given a compact monad v we denote by iv the natural map from *G 

onto *G/v and by T~ the image of the filter generated by v, i.e. 

T~ : {i~(*A)[ v C ' A } .  

We intend to show: 

a) (*G~, T~) is a compactification of (G, T); 

b) every compactification is obtained in this manner. Moreover,  every 

isomorphism class of compactifications is represented by a unique compact 

monad. 

c) One compact monad is included in the other iff there is an epimorphism 

from the second compactification onto the first one (preserving the image of G). 

Thus the supremum of any number of compactifications corresponds to the 

intersection of the monads. The infimum of two compactifications corresponds 

to the product of the monads. 

1.5. THEOREM. Let f be a (continuous) homomorphism of (G, tz(G)) onto a 

dense subgroup of the compact group (H, tz (H)). Let v be f-I(l~ (H)). Then v is a 
compact monad and (* G / v, Tv) is isomorphic to ( H, tz ( H )) over the embedding of 

G, by the map j(xv) = ~ 

PROOF. f: *G --~ *H is an algebraic homomorphism. Since ~ (H)  is a normal 

subgroup of *H [4; 8.1.8], v is a normal subgroup of *G. v is nuclear as the 

inverse image of a nuclear set [3; 5.1.9] and/z  (G)  C v because of the continuity 

of f. Next assume that x - y. There is a standard element a E H such that 

f ( x ) E  ~ (a ) .  If f ( y ) ~ / z ( a )  then there is a neighbourhood W of a in H such 

that f ( y )  ~ * W and f (x)  E * W. Therefore x ~ *f-1(W) and y ~ *f-~(W). Assum- 

ing x - y  this is impossible so that also f ( y ) E t t ( a ) .  But then f(xy-~) = 

f (x)( f (y))-~E/z(a)( /z(a))  ~ C/x(H).  

Next we define the map j :  *G ~ H by j(x) = ~ j is well defined: as H is 

a compact Hausdortt  space every point is near a unique standard point. 

j(xy)=~176176176 1 so that j is an algebraic 

homomorphism. Since f (G)  is dense in H, j is onto H. Clearly v is the kernel of j 

so that *G/v is algebraically isomorphic to H via the map j(xv) = ~ The 
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isomorphism is over the embedding of G since for a standard element a we have 

j(iv(a)) = j (a)  = ~ = f (a ) .  
It remains to show that under this isomorphism Tv is carried to the 

neighbourhood filter T of the identity of H and vice versa. 

Let V be a neighborhood in T. We show a set in T~ whose image is included in 

V. This suffices for one direction since the closed neighbourhoods in T form a 

base for T. We have / x ( H ) C * V  so that uCf-~(*V)=*[f-~(V)].  Thus 

*[f-~(V)] u E Tv and 

j (*[f-'(V)]u) = {~ e f-'(* V)} C{~ l Y e * V} C 9.  

On the other hand if u C*A then f- '(I.~(H))C*A. Therefore  there exists a 

neighbourhood V E T  such that f -~ (V)CA.  We show that j -~(V)C*Au:  If 

xu Uj-~(V) then j ( xu )E  V and ~ E V. Therefore  f ( x ) E  * V . i z ( H )  and 

x E f - ' ( * V ) .  u C * A , .  

We denote by u(H) the compact  monad which was obtained from the 

compactification (H, ~ (H))  in Theorem 1.5. 

1.6. THEOREM. For every compact monad u there is a compactification 
(H, /z (H)}  such that u = u(H). 

PROOF. 

a) We assume first that e is the only standard element in v. Then v is the 

monad of a Hausdorff topology on G. 

The monad of a point x is xv and since u D )t it includes the monad of the 

ultrafilter generated by x. Therefore  the topology is precompact  [3; 7.4] and G 

can be densely imbedded in a compact  group (H,/z (H)) which induces on G the 

topology determined by u. Thus u = t t ( H ) n * G  and u = u ( H ) = f - I ( ~ ( H ) )  

where f is the identity map. 

b) In the general case we let K be the set of standard elements in u. 

K - -  u n G and u is normal in *G so that K is normal in G. Let G~ be the 

quotient group G / K  and let g be the natural mapping of G onto G~. We want to 

apply part (a) of the proof to G~. G~ is a topological group with the natural 

quotient topology, and /z(G~)= g(l~(G)). We denote by v~ the set g(u);  then 

clearly v 1D ~I,L (G1) and u~ is a normal subgroup in *G~ = g(*G), u~ is nuclear by 

0.1. To prove that v~ is a compact monad it remains therefore to show that 

Ul D A (G~). Given x ~ *G let Ax be the monad of the ultrafilter generated by x 

in G and let Ag(x) be the monad of the ultrafilter generated by g(x) in G~. 

Assume now that y E Ax. Then a separation of g(x) from g(y)  by a standard set 

B would induce a separation between x and y by g-~(B). Therefore  g(Ax)C 
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Ag (x). But g(Ax) is nuclear by 0.1 and since the monad of the ultrafilter Ag(x) is 

a minimal nuclear set we conclude that g(Ax) -- Ag(x). If now z - t in *G, and 

z = g(x)  then there is also some y E Ax such that t = g(y).  Therefore  zt -~ = 

g(xy-~)E  g(v)  = vl. Therefore  t,1D A(G1), and t,~ is a compact  monad. 

To finish our proof we observe the following claims: 

i) * K C v ;  

ii) g-l(v 0 = l,. 

If v C * V  then K C*V. But this implies that K C V  and * K C * V .  Thus 

*K C N {* V [ v C * V} = v. This proves claim (i). 

Next assume that x ~ g-~(v2) so that g ( x ) E  v~. Since g ( v ) =  vl there is some 

a f t ,  such that g ( x ) = g ( a )  and g(xa-~)=e.  Hence x a - ~ E * K C v  and 

x ~ v �9 a -- v. This proves claim (ii). 

Thus every standard element in v~ is the image of at least one standard 

element which must be in v by claim (ii), and therefore in K. We conclude that e 

is the only standard element in vl which is itself a compact  monad and part (a) 

applies. Thus there is a compactification (H, lz(H)) of (G~, /x(G))  for which 

`f-'(tz(H)) = u,. It is easy to see that f o g  turns H into a compactification for 

(G,/z (G))  and by claim (ii) (`fog)-~(~(H))= v. 

1.7. COROLLARY. For every compact monad v, (*G / v, Tv ) is a compactifica- 

tion and all the compactifications are obtained in this manner. 

PROOF. Given a compact  monad v we know by Theorem 1.6 that v = v(H)  

for some compactification (H, / , t (H))  and that (*G/v, Tv) is isomorphic to 

(H, p, (H))  by Theorem 1.5. Theorem 1.5 also assures that all the compactifica- 

tions are thus obtained. 

1.8. THEOREM. Let (H,/,t (H))  and (H', I~ (H')) be compactifications of G. If  

there exists an epimorphism of H onto H'  which preserves the image of G then 

v (H)  C v(H').  

PROOF. Let g and g '  be the mappings of G into H and H' respectively, 

and let h be the epimorphism of H onto H ' .  Then h-l(/,t (H ' ) )  D p, (H)  since h is 

continuous. Therefore  g '  lh -~(p, (H ' ) )  D g-l(/z (H)). In other words 

(h o g)-~(/.t (H ' ) )  D v(H).  But h o g = g, and therefore t , (H')  = 

g'-'(/z (H')) D v(H).  

We have now a complete description of the relations between compact  

monads and compactifications. By 1.8 each isomorphism class of compactifica- 

tions gives rise to a single compact  monad v, for which *G/v  is in this class. Since 
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for every compactification H in this class v = v(H),  we have also v = v(*G/v).  

Therefore  the correspondences v---~*G/v and H--* v(H)  are the inverses of 

each other and they identify compact monads with isomorphism classes of 

compactifications. 

We note also the converse of 1.8: 

1.9. THEOREM. I f v  C v' then there is an epimorphism of *G/vonto *G/v'.  

PROOF. There is a natural map form *G/v onto *G/v'  and it is easy to see 

that it is a topological epimorphism. 

1.10. LEMMA. 

i) The intersection of a family of compact monads is a compact monad. 

ii) The product of two compact monads is a compact monad. 

PROOF. 

i) The intersection is a normal subgroup, includes A and p, (G),  and is nuclear 

by [3; 5.1.6]. 

ii) The product is a normal subgroup, includes A and/~ (G)  and it is nuclear by 

0.2. 

1.11. Therefore,  it is clear that the intersection of a family of compact 

monads represents the smallest compactifications which can still be mapped onto 

each of the compactifications in family. Similarly, the product of two compact 

monads represents the largest compactification which is the image of the two 

compactifications. 

2. The Universal compactilication 

The compact monad for the universal compactification is simply the smallest 

such m o n a d - - t h e  intersection of all compact monads. In this section we 

describe a (standard) procedure to obtain the filter which is associated with it. 

2.1. We note first that if we are given a compact monad v which is the monad 

of the filter F then F characterizes the compactification which can be con- 

structed directly as follows (we analyze the standard version of Theorem 1.6): F 

describes a (not necessarily Hausdoff) topology on G. If K is the set of elements 

which belong to every member of F then the topology induced on G / K  is 

precompact and its completion is the compactification whose compact monad is 

/~ (F). Thus a standard construction of the filter whose monad is the universal 

compact monad is indeed a description of the universal compactification. 
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2.2. LEMMA. I f  v is a nuclear subgroup of * G such that A C v and such that 

ava-1C v for every standard element a then v is normal in G. 

PROOF. We denote by F the filter whose monad is v. It sufices to show that 

xvx -1C * V for every x ~ *G and V ~ F. So we assume that x and V are given. 

Let B be an infinitesimal member of F. Then B 3 C * V  since v is a group and 

therefore W3C V also for some W E F. Replacing W by W N  W -1 which is 

again in F we may assume that W = W -1. Next let A be an infinitesimal set in 

the ultrafilter generated by x. Then A A - 1 C *  W since A C v. Therefore also 

C - C  1C W for some standard set C that contains x. We chose a standard 

element c E C and we have x E * C C * W c  and x - l E  c- l*W.  Finally c B c - l C  

cvc -1= v C * W  so that c U c - l C  W also for some standard U in F. Adding 

everything up we have xvx-I  C (* Wc)  U (c-1" W) C * W 3 C * V. 

2.3. Thus we may replace condition (iii) of 1.3 by: 

iii)' a v a - l C  v for every standard element a in G. 

We describe first the filter which belongs to the universal compactification 

using the set A of 1.1. 

2.4. Let F be the filter generated by A U/z (G) .  Let F '  be the collection of 

sets V with the following property: there are sequences {V~} such that V0 = V, 

V~ D V~+~ and Vi E F for i = 1, 2, �9 �9 �9 F '  has the following properties: 

a) F '  is a filter: if {V~} is a sequence for V and {Wi} is a sequence for W then 

{V~ N W,} is a sequence for V n w ;  

b) if V E F '  then V -1E F:  if {V~} is a sequence for V then {V~ -1} is a sequence 

for V -1. V~ -1E F since A = A-l; 

c) similarly a V a - l @  F'  whenever V E F' .  This follows from the fact that 

aAa -1 CA. 

2.5. THEOREM. I d. (F') is the compact monad of the universal compactifica- 

tion. 

PROOF. Clearly /x (F') D A U/.t (G). if x, y ~/x  (F') and V E F '  then there is 

some V1 @ F '  such that V~ C V. By 2.4 (b), y-I  ~ / z  (F') and xy-1 ~ .  V12 C * V. 

Since V was arbitrary in F '  this shows that/x (F') is a group. By 2.4 (c) and 2.3 

this is a normal subgroup of * G. We conclude that/z (F') is a compact monad. 

Next let v be any compact monad which generates the filter U. For the 

universality of /z  (F') it suffices to show that every set in U is in F' .  Since v is a 

group it is easy to construct for every V0 E U a sequence { V~} such that V~Z+l C V~ 

and V~ C U for i = 1 , 2 , - . . .  Since v D / z ( G ) U A  this proves that V o E F ' .  
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2.6. Finally we want to give a completely standard description of the 

universal compactification filter F '  of 2.4. A subset V of G is of finite index if 

there are b l , . .  ", b, such that Vbl U �9 �9 �9 U Vb, = G. Let L be the collection of 

sets V with the following property: there is a sequence of symmetric neighbour- 

hoods of the identity {V~} such that V1C V, V~.1C V~ and V~ has finite index for 

i = 1 , 2 , - . . .  

THEOREM. L = F' .  

PROOF. We show first that every set in F '  has a finite index. Assume that 

V E F '  and for every al, �9 �9 -, a, there is some b ~ G such that b ~  Va. Then by 

the main property of enlargements there is some x E * G such that x ~ * Va for 

every standard a E G. On the other hand since A C* V there is a set A such that 

x E *A and A A - 1 C  V (because every infinitesimal set in the ultrafilter gener- 

ated by x satisfies this). Therefore for every a E A  we have x ~ * V a ,  a 

contradiction. Let now {V~} be a sequence of sets like in 2.4. Then {V~ O V? 1} is a 

sequence of symmetric sets with finite index (since they are again in F ' )  and 

clearly they are neighbourhoods of the identity as they include /z(G). Thus 

V o E L  and F ' C L .  

On the other hand assume that {V,} is a sequence for V like in 2.6. We show 

that V, E F for all i so that V E F '  and L C F'. Since V~§ has a finite index there 

are elements al �9 �9 �9 a, such that V~§ U �9 �9 �9 U V i + l a .  = G. Given any x E *G 

one of the sets V,+,aj is in the filter generated by x. Therefore (V~+laj) 

(V~+laj) -1= V~., C V, Therefore the monad ,~x of the filter generated by x 

satisfies )tx (Ax)-I C * V, 

In particular every subgroup of finite index is in L. If L has a base which 

consists of such normal subgroups then the universal compactification can be 

represented as the inverse limit of the finite quotient groups. This follows from 

[1; III, 7.3, cor. 2]. We want to show that this is always the case for rings with a 

unit element. 

2.7. Let R be a ring with a unit. The same theory leads us to the notion of a 

compact monad which must be a two sided ideal rather then a normal subgroup. 

THEOREM. The universal compactification of R is the inverse limit of the finite 

rings R / I  where I ranges over all the ideals with finite index in R. 

PROOF. Let L be the universal compactification filter and let v be its monad. 

By [1; III, 7.3, cor. 2] it suffices to show that L has a base which consists of ideals. 

Let (H,/z (H)) be the universal compactification. Since v = f-l(/z (H)) every set 
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V in F includes a s e t / - I ( W )  where W is a neighbourhood of 0 in H. Therefore  it 

suffices to show that each neighbourhood of 0 in H includes an open ideal. Also 

[(1) is a unit in H so that if H ~  0 then by [2, theor. 8] H is totally disconnected. 

Thus 0 has a base by clopen sets and we can assume that W is clopen. 

Let U be an infinitesimal neighbourhood of 0 in H. It suffices to show that the 

*ideal generated by U is included in *W. This ideal is the collection of internal 

sums ~7=1 a~v~b~ where ~" is in *N, a,, b~ ~ *R and v~ E U. Assume that there is 

such a sum which is not in *W and let a = m v ~ b l + " "  + a=+~v~+~b,+~ be the 

shortest such sum. Put/3 = alva~31 + �9 �9 �9 + a~v=b=. Then/3 ~ a for some standard 

a ~ H and a E W since /3 E W and W is closed. But a=+lv,+~b=+~ is in ~ (H)  

which is an ideal so that a E p~ (a )C *W since W is also open; which is a 

contradiction. This proves the theorem. 

2.8. Finally we like to mention that Lemma  2.2 gives a clear connection 

between the compactifications of a given topology /~(G) and those of the 

discrete topology. If u is a compact  monad for the discrete topology then 

v - t z ( G )  is a compact  monad for ~z(G) since (i), (iii) and (iii)' are satisfied. 

Clearly all the compactifications of /~(G) are obtained in this way and the 

universal compactification is obtained by taking v to be the universal compactifi- 

cation for the discrete topology. 
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